医药废水中COD怎么去除?

网上有关“医药废水中COD怎么去除?”话题很是火热,小编也是针对医药废水中COD怎么去除?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1催化氧化法 在催化剂作用下,废水中的有机物可以被强氧化剂氧化分解,有机物结构中的双键断裂,由大分子氧化成小分子,小分子进一步氧化成二氧化碳和水,使COD大幅度下降,BOD/COD值提高,增加了废水的可生化性,经深度处理后可达标排放。用催化氧化法处理医药工业废水,可以克服传统生化处理医药废水效果不明显的不足,有效地破坏有机物分子的共轭体系,达到去除COD、提高可生化性的目的。催化氧化法中,选择催化剂和氧化剂是关键。选择合适的催化剂和氧化剂,在适宜的工艺条件下处理的废水再经过二次处理后可达标排放。如在活性炭载带过渡金属氧化物催化剂的催化作用下,采用Cl02作氧化剂处理医药废水,不但处理成本低,氧化性远高于次氯酸钠,而且不会生成三卤甲烷等致癌物质[3]。 2.内电解法内电解法的原理是利用铁屑中铁与石墨组分构成微电解的负极和正极,以充入的污水为电解质溶液,在偏酸性介质中,正极产生具有强还原性的新生态氢,能还原重金属离子和有机污染物。负极生成具有还原性的亚铁离子。生成的铁离子、亚铁离子经水解、聚合形成的氢氧化物聚合体以胶体形式存在,它具有沉淀、絮凝吸附作用,能与污染物一起形成絮体、产生沉淀。应用内电解法可去除废水中部分色度、部分有机物,并且提高废水的生化处理性能,增加生物处理对有机物的去除效果。其反应机理为:阳极(Fe):  Fe=Fe2++2e E=-0.44V阴极(C):  2H++2e=H2 E=0.00V当有氧时: O2+4H++4e=2H2O  E=1.23V

 O2+2H2O+4e=4OH-  E=0.40V 实验证明,在内电解后,废水的可生化性能明显提高,这主要是由于在内电解的过程中产生的新生态氢和亚铁离子具有较强的还原性,能与废水中的难降解的有机物发生氧化还原反应,破坏其化学结构,从而提高了生物降解性能。此外。在电极氧化和还原的同时,废水中某些有色物质也由于参加氧化还原反应而被降解,从而使废水的色度降低。 3.吸附法吸附法处理废水是通过活性炭、磺化煤等吸附剂和吸附质(溶质)间的物理吸附、化学吸附以及交换吸附的综合作用来达到除去污染物的目的。其具有以下特点[4]:

(1)活性炭对水中有机物吸附性强;

(2)活性炭对水质、水温及水量的变化有较强的适应能力。对同一种有机污染物的污水,活性炭在高浓度或低浓度时都有较好的去除效果;

(3)活性炭水处理装置占地面积小,易于自动控制,运转管理简单;

(4)活性炭对某些重金属化合物也有较强的吸附能力,如汞、铅、铁、镍、铬、锌、钻等;

(5)饱和炭可经再生后重复使用,不产生二次污染;

(6)可回收有用物质,如处理高浓度含酚废水,用碱再生后可回收酚钠盐。

大量的研究和实践已经证明活性炭是一种优良的吸附剂,它在工业废水处理中有着特殊的处理效果。但是由于生产原料的限制和价格昂贵,导致它的推广应用受到了限制,而以褐煤、焦渣、炉渣和粉煤灰等为吸附剂处理工业废水的研究变得十分活跃[5],所以吸附剂再生问题能否解决是该方法能否为厂家所接受的关键所在。4.混凝沉淀法混凝是水处理中的一道重要工序,通过混凝沉淀过滤,可大幅度降低水中的浑浊度、色度,去除水中的悬浮物和杂质。混凝过程是一个十分复杂的物理化学过程,它是在一定的pH、温度等条件下,向废水中加入一定量的混凝剂,通过搅拌使其与污水中的悬浮状水不溶物和过饱和物等发生反应沉淀下来,使废水由浑浊变得澄清。

混凝效果的好坏与混凝剂种类、水中杂质、浑浊度、PH值、水温、药剂的投加量和水力条件等因素密切相关,其中,混凝处理的关键是投加混凝药剂。性能优越的混凝剂不仅水处理效果好,成本还低。5.厌氧生物处理废水厌氧生物处理是利用厌氧微生物的代谢过程,在无需提高氧气的情况下把有机物转化为无机物和少量的细胞物质,这些无机物主要包括大量的沼气和水。这种处理方法对于低浓度有机废水,是一种高效省能的处理工艺;对于高浓度有机废水,不仅是一种省能的治理手段,而且是一种产能方式。厌氧生物处理技术现已广泛应用于世界范围内各种工业废水的处理,它的处理工艺主要有普通厌氧消化,厌氧接触工艺,上流式厌氧污泥床(UASB),厌氧流化床,厌氧生物转盘等。该工艺将环境保护、能源回收和生态良性循环有机结合起来,能明显地降低有机污染物,用厌氧处理高浓度有机废水有较高的处理效果,BOD去除率可达90%以上,COD去除率可达70%—90%,并将大部分有机物转化为甲烷。用该法处理废水成本比好氧处理要低[6],设备负荷高,占地面积少,产生剩余污泥量较少,可直接处理高浓度有机废水,不需要大量稀释水,并可使在好氧条件下难于降解的有机物进行降解,但它仍有不足之处,其初次启动过程较慢,对有毒物质较为敏感,操作控制因素比较复杂,且出水COD浓度高于好氧处理,仍需要后续处理才能达到较高的排水标准。如孙剑辉[7]等研究的用铁屑作填料的UBF酸化反应器与UASB组成的两相厌氧系统能够稳定、高效地处理Zn 5—ASA废水。实验结果表明:此系统在UBF与UASB的HRT分别控制在5.95h和11.43h时,UBF与UASB的OLR(以COD计)分别高达58.44和17.01kg/(m3.d)。对SCOD和BOD5的总去除率分别达90%和95%左右,具有系统运行稳定、处理效率高等优点,系统中UBF反应器所选用的铁屑填料,通过微电解作用,能够有效提高废水的可生化性,且可省去通常的调碱工序,为难降解有机废水的处理开辟了新途径。6.结束语根据上面的叙述,我们可以知道,尽管水处理方法经过一百多年的发展,至今已比较成熟,但是在医药废水处理这一领域上,仍存在很多问题,仅靠单一的处理工艺是很难使出水达标排放的,必须对现有的工艺进行集成,采用多种工艺联合处理的方法,才能达标排放,甚至是变废为宝,实现资源综合利用的目的。如吸附—混凝—高级化学氧化法[8]、内电解混凝沉淀—厌氧—好氧法[9]、UBF——UASB两相厌氧法、水解—接触氧化法[10]、气浮—兼氧—CASS法[11]、OFR—SBR法[12]等,医药废水经过这些工艺的处理后均能达标排放。笔者认为医药废水治理的关键在于准确分析出该废水的实际水质特性(特别是对废水内有机物的辨析),以及其在不同温度、酸碱度、厌氧和好氧等条件下各组分的变化情况,如果掌握了以上信息,在现有科学技术的基础上就能找到一种真正工艺简单、操作简便、处理彻底、节省能源且成本低廉的处理方法。

全球变暖现在具体情况怎么样了人类现在的措施有效吗?

铅污染

是可在人体和动物组织中积蓄的有毒金属。主要来源于各种油漆、涂料、蓄电池、冶炼、五金、电镀、化妆品、染发剂、釉彩碗碟、餐具、燃煤、膨化食品、自来水管等。它是通过皮肤、消化道、呼吸道进入体内与多种器官亲和,主要毒性效应是贫血症、神经机能失调和肾损伤,易受害的人群有儿童、老人、免疫低下人群。

铅对水生生物的安全浓度为0.16mg/L,用含铅0.1~4.4mg/L的水灌溉水稻和小麦时,作物中铅含量明显增加。

人体内正常的铅含量应该在0.1毫克/升,如果含量超标,容易引起贫血,损害神经系统。而幼儿大脑受铅的损害要比成人敏感得多,一旦血铅含量超标,应该采取积极的排铅毒措施。儿童可服用排铅口服液或借助其他产品进行排铅。

镉污染

镉不是人体的必要元素。镉的毒性很大,可在人体内积蓄,主要积蓄在肾脏,引起泌尿系统的功能变化;镉主要来源有电镀、采矿、冶炼、燃料、电池和化学工业等排放的废水;废旧电池中镉含量较高、也存在于水果和蔬菜中,尤其是蘑菇,在奶制品和谷物中也有少量存在。

镉能够取代骨中钙,使骨骼严重软化,骨头寸断,会引起胃脏功能失调,干扰人体和生物体内锌的酶系统,导致高血压症上升。易受害的人群是矿业工作者、免疫力低下人群。水中含镉0.1mg/L时,可轻度抑制地面水的自净作用,镉对白鲢鱼的安全浓度为0.014mg/L,用含镉0.04Mg/L的水进行灌溉时,土壤和稻米受到明显污染,农灌水中含镉0.007mg/L时,即可造成污染。

正常人血液中的镉浓度小于5微克/升,尿中小于1微克/升。镉能够干扰骨中钙,如果长期摄入微量镉,使骨骼严重软化,骨头寸断,引起骨痛病,其还会引起胃脏功能失调,并干扰人体和生物体内锌的酶系统,导致高血压症上升。

汞污染

汞及其化合物属于剧毒物质,可在人体内蓄积。主要来源于仪表厂、食盐电解、贵金属冶炼、化妆品、照明用灯、齿科材料、燃煤、水生生物等。血液中的金属汞进入脑组织后,逐渐在脑组织中积累,达到一定的量时就会对脑组织造成损害,另外一部分汞离子转移到肾脏。

进入水体的无机汞离子可转变为毒性更大的有机汞,由食物链进入人体,引起全身中毒作用;易受害的人群有女性,尤其是准妈妈、嗜好海鲜人士;天然水中含汞极少,一般不超过0.1μg/L。正常人血液中的汞小于5-10微克/升,尿液中的汞浓度小于20微克/升。如果急性汞中毒,会诱发肝炎和血尿。?

铬污染

主要来源于劣质化妆品原料、皮革制剂、金属部件镀铬部分,工业颜料以及鞣革、橡胶和陶瓷原料等;如误食饮用,可致腹部不适及腹泻等中毒症状,引起过敏性皮炎或湿疹,呼吸进入,对呼吸道有刺激和腐蚀作用,引起咽炎、支气管炎等。水污染严重地区居民,经常接触或过量摄入者,易得鼻炎、结核病、腹泻、支气管炎、皮炎等。

铜污染

指铜(Cu)及其化合物在环境中所造成的污染。主要污染来源是铜锌矿的开采和冶炼、金属加工、机械制造、钢铁生产等。冶炼排放的烟尘是大气铜污染的主要来源。

镍污染

是由镍及其化合物所引起的环境污染。冶炼镍矿石及冶炼钢铁时,部分矿粉会随气流进入大气。在焙烧过程中也有镍及其化合物排出,主要为不溶于水的硫化镍(N iS),氧化镍(N iO)、金属镍粉尘等,成为大气中的颗粒物。燃烧生成的镍粉尘遇到热的一氧化碳,会生成易挥发的、剧毒的致癌物羰基镍[N i(CO)4]。精炼镍的作业工人,患鼻腔癌和肺癌的发病率较高。镀镍工业、机器制造业、金属加工业的废水中常含有镍,常用碱法处理工业废水,使其生成氢氧化镍[N i(OH)2]沉淀而清除掉。镍可在土壤中富集,含镍的大气颗粒物沉降、含镍废水灌溉、动植物残体腐烂、岩石风化等都是土壤中镍的来源。植物生长会吸收土壤中的镍。镍含量最高的植物是绿色蔬菜和烟草,可达1.5-3ppm。镍对水稻产生毒性的临界浓度是20ppm。中国规定车间空气中羰基镍的最高容许浓度为0.001mg/m3,地面水中镍的最高容许浓度为0.5mg/L。

锌污染是指锌及化合物所引起的环境污染。主要污染源有锌矿开采、冶炼加工、机械制造以及镀锌、仪器仪表、有机物合成和造纸等工业的排放。汽车轮胎磨损以及煤燃烧产生的粉尘、烟尘中均含有锌及化合物,工业废水中锌常以锌的羟基络合物存在。

环境污染

重金属污染

从环境污染方面,重金属是指汞、镉、铅以及“类金属”-----砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、砷、镉、铬。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。

土壤污染,可以用耐重金属的植物修复,可以用来做游乐园等,非农业耕地,美国有这样的例子,安徽铜陵铜尾矿与澳大利亚合作,进行

植物修复,效果已初见端倪。

重金属一般以天然浓度广泛存在于自然界中,但由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染。?[2]?

人体伤害

以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。如日本的水俣病,就是因为烧碱制造工业排放的废水中含有汞,在经生物作用变成有机汞后造成的;又如痛痛病,是由炼锌工业和镉电镀工业所排放的镉所致。汽车尾气排放的铅经大气扩散等过程进入环境中,造成目前地表铅的浓度已有显著提高,致使近代人体内铅的吸收量比原始人增加了约100倍,损害了人体健康。重金属对人体的伤害极大。常见的有:

遭受重金属污染伤害的儿童

汞:食入后直接沉入肝脏,对大脑、神经、视力破坏极大。天然水每升水中含0.01毫克,就会导致人中毒。

镉:导致高血压,引起心脑血管疾病;破坏骨骼和肝肾,并引起肾衰竭。

铅:是重金属污染中毒性较大的一种,一旦进入人体将很难排除。能直接伤害人的脑细胞,特别是胎儿的神经系统,可造成先天智力低下。

钴:能对皮肤有放射性损伤。

钒:伤人的心、肺,导致胆固醇代谢异常。

锑:与砷能使银手饰变成砖红色,对皮肤有放射性损伤。

铊:会使人多发性神经炎。

锰:超量时会使人甲状腺机能亢进。也能伤害重要器官。

砷:是砒霜的组分之一,有剧毒,会致人迅速死亡。长期接触少量,会导致慢性中毒。另外还有致癌性。

这些重金属中任何一种都能引起人的头痛、头晕、失眠、健忘、神精错乱、关节疼痛、结石、癌症。

全球气温升高的原因是什么?

在冬冷夏热四季分明的我国大部分地区,人们普遍反映近些年冬季气温越来越高了,好像冬天不像以前那样冷得难熬了。其实不仅是我国这样,全球的气温都在升高;也不是这几年,自80年代以来气温连续升高。由于全球变暖,使得冬季降水量增加,夏季出现异常高温和严重干旱,某些地区暴雨次数增加,世界各地冰川减少,北半球冰雪覆盖面积缩小,而且海平面平均每年大约上升2.5毫米。1995年夏季,美国出现了百年未遇的酷热,不但使许多人在热浪中丧生,还造成两起因铁轨受热变形而导致火车出轨的事故。欧洲大部分地区也出现酷夏,不少地方最高气温达40℃。

全球气温的升高,将会给人类带来直接的破坏性影响:海平面升高将会淹没许多城市和土地,生态平衡的破坏将导致农业减产,昆虫和其他传染病症的动物的迁移更会给人类健康带来危害。

气候为什么会变暖呢?科学家们多年来已经做了大量观测和研究。不少科学家认为,是人类活动导致全球变暖。人类生产活动中排放大量大量二氧化碳及甲烷、氧化氮等气体,使得大气层像温室一样吸收更多的热,使温度升高。不过也有的科学家提出不同观点,他们指出,地球历史上出现过多次冷时变化,现在的升温也不过是地球气温自然变化罢了。到底是人类影响还是自然变化,一时还难以定论

最新《自然》:关注全球气温升高

在最新一期英国《自然》杂志上,由多国科学家组成的国际研究小组发表研究报告称,全球变暖将导致世界上四分之一的陆地动植物在未来50年内灭绝。也就是说,100多万个物种将在半个世纪后从地球上消失。

来自8个国家的科学家对欧洲、南非、澳大利亚、巴西、墨西哥和哥斯达黎加6地的1103个物种进行了研究。其中包括植物、哺乳动物、鸟类、爬行动物和昆虫等。他们以联合国估计的全球气温到2050年可能比现在升高0.5至3摄氏度的标准为依据,利用电脑模型计算气温升高对每一物种的影响。这是迄今最大规模的类似研究。

全球气温升高迫使大部分陆地物种向两极和高山地区迁徙,但许多动植物无法实现这一点。据科学家保守估计,这6个地区的物种到2050年将消失15%至37%,即平均有26%的物种将因为气温升高、无法寻找到适宜的栖息地而灭绝。

补充:另外,全球变暖会导致各种疾病、病毒的传播速度加大、范围扩大,最终还是会影响人的身体健康。

全球气温升高对人类利少弊多

全球气候变暖已经是不争的事实,如何应对气候变暖对人类生存环境的挑战,是正在北京召开的气候变化国际科学讨论会的主题之一。世界气象组织秘书长奥巴西教授指出,气候变化让我们又多了一个立即采取紧急行动的理由。

当前最急迫的是我们对于全球变暖还缺少基本的认知,气温升高到底会改变些什么。中国气象局气候变化特别顾问丁一汇说,气候变暖将会带来一些有利的影响,如:温度升高使中纬度的一些地区存在着作物增产的可能;全球木材供应可能会增加;对某些缺水地区的居民来讲,可用水量可能增加;中高纬度地区居民因冬季寒冷的死亡率降低;由于出现暖冬,取暖所需能源减少。但是对国民经济的影响将是以负面影响为主。

———种植业首当其冲受到冲击。气候变暖使蒸发加大,如果降水量不明显增加,将会使我国农牧交错带南扩。东北与内蒙古相接地区农牧交错带的界限将南移70公里左右,华北北部农牧交错带的界限将南移150公里左右,西北部农牧交错带界线将南移20公里左右,草原的面积将因此增加。但农牧过渡带是潜在的沙漠化地区,沙化威胁巨大。

气候变暖后,土壤有机质中的微生物分解将加快,造成地力下降,需要施用更多的肥料;气候变暖同样对昆虫、杂草有利,这使得农药和除草剂的施用量增大。

———农业生产成本将大幅增加。到2030年,我国种植业产量在总体上因全球变暖可能会减少5%~10%左右,其中小麦、水稻和玉米三大作物均以减产为主。年平均温度增加1°C,大于10°C积温的持续日数全国平均就延长15天,冬小麦的安全种植北界也将由目前的长城一线北移到沈阳-张家口-包头-乌鲁木齐一线。到2050年,气候变暖将使三熟制的北界北移500公里之多,从长江流域移至黄河流域;而两熟制地区将北移至目前一熟制地区的中部,一熟制地区的面积将减少23.1%。

———水将变得更少更脏。全球变暖会影响整个水循环过程,可能使蒸发加大,改变区域降水量和降水分布格局,增加降水极端异常事件的发生,导致洪涝、干旱灾害的频次和强度增加,以及使地表径流发生变化。

我国七大流域天然年径流量整体上呈减少趋势。其中,长江及其以南地区年径流量变幅较少;淮河及其以北地区变幅最大,以辽河流域增幅最大,黄河上游次之,松花江最小。全球变暖还使得我国各流域年平均蒸发增大,其中黄河及内陆河地区的蒸发量将可能增大15%左右。

在干旱年份,气候变暖引起的缺水量将大大加剧我国华北、西北等地区的缺水形势,对农业灌溉用水的影响远远大于对工业用水和生活用水的影响,尤其是在降水减少和蒸发增加的地区。预计2010——2030年西部地区缺水量约为200亿立方米,2050年将缺水100亿立方米。全球变暖将使降水变率随着平均降水量的增加而发生变化,蒸发量也会因全球平均温度增加而增大,这可能意味着未来旱涝等灾害的出现频率会增加。

由于蒸发量加大,河水流量趋于减少,河流原有的污染程度可能会加重,特别是在枯水季节。同时,河水温度的上升,也会促进河流里污染物沉积、废弃物分解,进而使水质下降。

———个人生活质量将会下降。气候变暖对人类健康的直接影响将更加明显,高温使得病毒、细菌、寄生虫、敏感原更活跃,同时它也会损害人的精神、人体免疫力和疾病抵抗力。高温热浪的增加将使与热有关的疾病和死亡增加。全球变暖对人类健康造成的不利影响对贫穷地区的人口将是最大的。

气候变暖对人居环境产生影响,居住在河边和海岸带的居民受气候变暖最普遍、最直接的威胁是洪涝和滑坡。人类居住目前正遭遇包括水和能源短缺、垃圾处理和交通等环境问题,这些问题因高温、多雨而加剧。人口居住密度很高的低海拔海岸区的城市,更是经常处于海岸气候极端事件的威胁之中。在我国,居民收入大部分来源于受气候支配的初级资源产业,气候变暖对我国的不利影响将更严重。

科学家质疑

现有遏制全球变暖的方法

科学家对近 20 年来地球陆地生态系统的碳排放与吸收情况进行研究之后认为,所谓的"碳沉降"效应可能只是暂时的,不能依靠它来长期遏制全球变暖。

"碳沉降"是指植被吸收的二氧化碳多于它们释放的二氧化碳,这有助于降低大气二氧化碳浓度,缓解全球变暖的趋势。

来自欧洲和美国等多个地区的 30 名科学家在将于 8 日出版的英国《自然》杂志上说,地球植被的碳沉降效果并不稳定,大气中二氧化碳和氧气含量的数据证实,陆地生物圈在 20 世纪 80 年代期间吸收和排放的二氧化碳数量基本相当,没有出现碳沉降,20 世纪 90 年代则有一定的沉降效果。

数据表明,20 世纪 90 年代的碳沉降效应主要出现在北半球的非热带地区,包括北美、中国、欧洲等。科学家认为,出现碳沉降的主要原因可能是上述地区的退耕还林。此外,森林和草场火灾减少,使植被释放的碳减少,对碳沉降也有帮助。光合作用、呼吸作用、虫灾等其他因素的变化可能导致树叶、枯死植物和土壤微生物释放的碳减少。

科学家说,大气中二氧化碳浓度升高,可以提高植物生长速度,从而吸收更多的碳,暂时增强碳沉降效果,但这一效应终将达到饱和。影响碳沉降的不稳定因素很多,长期来看,全球陆地生物圈并不一定能够持续起到碳沉降的作用,特别是在温暖而干燥的年份。

森林救不了地球变暖

《环球时报》 (2001年06月08日第十六版)

进入夏季,在人们苦恼于气温"一年更比一年高"时,美国一群科学家又给了人们当头一棒,他们的最新研究表明:要想阻止气温逐年升高的趋势、化解温室效应的威胁,人类还得另想办法,而不能像从前那样寄厚望于森林。因为森林吸收的大量二氧化碳,最终几乎会如数奉还给地球。 温室效应被列为21世纪人类面临的最大威胁之一,它除了让天气变得越来越热外,还给全球的湿地沼泽、沿海低地、珊瑚礁、温带寒带大量物种带来毁灭性打击。 追根溯源,温室效应是过量的二氧化碳在大气中聚集而产生的一种天气现象。绿色植物进行光合作用吸收大量二氧化碳,这已是人们长期以来的共识,因而一直以来,森林被认为是解决温室效应的利器。 5月24日出版的《自然》杂志发表了美国著名杜克大学的几位植物学家和生态学家的一份最新实验报告。7年前,这几位科学家在杜克大学校区附近选择了两片森林,开始了评估树木吸收二氧化碳能力的实验。据推算,到2050年,排放到大气中的二氧化碳量将比现在增加35%-50%。于是,他们就在第一组森林中不断施放二氧化碳浓度为560ppm(ppm为百万分之一)的气体,以模拟50年后的浓度水平;第二组森林则保持目前正常的二氧化碳水平,即浓度在365ppm左右。 在实验开始的前两年里,第一组森林的树木在高浓度二氧化碳下生长明显加快,生长速度比第二组森林的树木大约快25%。但两年后,生长速度却在很短的时间内迅速下降,最终和第二组森林的树木的生长速度基本持平。分析原因,主要是土壤中的养分,特别是氮养分随着树木的迅速生长而消耗殆尽。 实验结果显示,树木生长需要阳光、水分、养分等多种因素,缺一不可,森林可以在短期内加速吸收二氧化碳,但因为土壤中的养分无法配套供应,所以从长期来看,无法指望森林会消化掉50年后增加的50%的二氧化碳。另外,科学家们在跟踪观察二氧化碳在树木生长过程中的作用后发现,树木吸收的二氧化碳主要是对树叶的生长起作用,对树干的作用则不明显。这样带来的最要命的后果是,树叶脱落以后会慢慢腐烂,它所吸收的二氧化碳在3年内将几乎全部回到大气中,而并非像以前人们所说的那样,会留在土壤里。 主持这项实验的杜克大学生物学教授戴维·埃斯沃斯对这一结果评价说:"如果这一结果在全球植被生态中被普遍证实,人们就不得不对环境问题进行再思考了。"目前,已经有实验表明,热带树木与其他地区的树木相比,对二氧化碳的吸收能力相对更低一些。 外界对这份报告给予了极大关注。美国伊利诺伊大学的一位植物学家说,这一结果的"潜在重要性"会越来越明显,它彻底推翻了人们的传统观念。 尽管森林在涵养水源、防止水土流失、调节气候等方面都有无可替代的作用,但在大量消化二氧化碳的能力上,人们不能太乐观。参与这项实验的另一位生态学教授拉姆·奥林认为,这一实验结果的重要性就在于此。他说,也许人们只能从减少二氧化碳气体的排放量入手来解决温室效应问题了,这将使全球的环保问题变得更为复杂,利益冲突更为尖锐。 减少二氧化碳的排放量,一直是国际间一个极为敏感的问题。去年的海牙国际环保会议不欢而散,美欧之间争执的关键问题就是二氧化碳排放标准。美国坚持认为,对发达国家排放量的限制应当考虑到森林对二氧化碳的吸收因素。如果考虑这一因素,对50年后的前景就不必过于悲观,对发达国家的二氧化碳排放标准的要求就不必过于苛刻。现在,这项最新的实验成果可以说正击中了美国的要害。果真如此,美国将不能以森林为借口来逃避自己的责任,而全球只能进一步严格限制二氧化碳的排放量,这又将直接影响到世界各国经济的发展。

微生物能"吃掉"温室气体 地球变暖有物相克

《江南时报》 (2002年08月12日第十五版)

本报综合消息 几位来自德国的科学家宣称他们在黑海中发现了一种以甲烷为食的生命体,并称这种生命体可以用来抑制全球变暖问题的继续恶化。 这些科学家称他们这次发现的生命体是地球上最古老的生物,已经有40亿年的历史。他们是在黑海中没有光线、没有氧气的深度中发现这种微生物的,并发现这些微生物是以甲烷为食的。 在此之前,科学家们一直认为甲烷只能够通过与氧气进行反应而消耗掉。这些德国科学家希望这些微生物可以用来"吃掉"目前还储存在地球表面以下的温室气体,许多甲烷目前还冻结在两极地带的冰层以下,但是随着全球变暖问题的加剧,它们很有可能被释放出来,使污染问题变得更为严重。这次研究活动的发起人之一的AntjeBoetius教授说:"这些在黑海中发现的微生物可能是地球上最古老的居民。我们可能要依靠他们来阻止气候灾难的发生。"

减缓全球变暖新招

--往海水中撒铁

《中国环境报》 2001年1月13日

新西兰科学家最近提出了解决全球变暖的新途径:提高南太平洋海水的铁含量。海水的铁含量升高,浮游生物和浮游植物就会快速生长。新西兰水和大气研究所(NIWA)把此项研究成果发表在《自然》杂志上。

很久以前,科学家就曾想用增加铁含量的办法使南太平洋水生植物快速生长,如同陆地上的森林和草原,这些植物在减少大气中的二氧化碳含量方面起重要作用。于是,科学家把2吨分解铁撒在南太平洋50多平方公里的范围内,把水中的铁含量提高了10倍。两周之内,浮游生物比播撒区外的增加了10倍之多。 南太平洋面积占世界海洋面积的15%,对全球气候起着至关重要的作用,但它的铁含量偏低。 NIWA撒铁之后,美国航空航天局隔6个星期拍摄的画面表明,浮游植物的扩散面积已达1100平方公里。浮游植物持续生长时间之长超乎人们的预料,科学家认为,这可能是浮游植物具有把特殊物质释放到海水中的能力,以便于吸收铁。卫星图像生动地展示了南太平洋生态圈对铁含量些许增加的敏感性。

书山有路勤为径,学海无涯苦做舟。

关于“医药废水中COD怎么去除?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(9)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 初彤的头像
    初彤 2025年08月25日

    我是爱司号的签约作者“初彤”

  • 初彤
    初彤 2025年08月25日

    本文概览:网上有关“医药废水中COD怎么去除?”话题很是火热,小编也是针对医药废水中COD怎么去除?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

  • 初彤
    用户082511 2025年08月25日

    文章不错《医药废水中COD怎么去除?》内容很有帮助

联系我们:

邮件:爱司号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信